Lecture 18 & 19 Roadmap

Understand the Following Topics:

- •Flow and Error Control
- •Stop and Wait
- •Sliding window
- •Stop and Wait ARQ
- •Go Back N ARQ
- •Selective Reject ARQ

Flow and Error Control

Flow Control

Error Control

Note: Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment.

Flow Control

- Limits the amount or rate of data that is sent
- Reasons:
 - Source may send frames faster than destination can process headers
 - Higher-level protocol user at destination may be slow in retrieving data
 - Destination may need to limit incoming flow to match outgoing flow for retransmission

Model of Frame Transmission

Stop and Wait

- Source transmits frame
- Destination receives frame and replies with acknowledgement
- Source waits for ACK before sending next frame
- Destination can stop flow by not send ACK
- Works well for a few large frames

Fragmentation

- Large block of data may be split into small frames
 - Limited buffer size
 - Errors detected sooner (when whole frame received)
 - On error, retransmission of smaller frames is needed
 - Prevents one station occupying medium for long periods
- Stop and wait becomes inadequate

Sliding Window

<u>Sliding window:</u>

- Allow multiple frames to be in transit
- Receiver has buffer W long
- Transmitter can send up to W frames without ACK
- Each frame is numbered (sequence number)
- ACK includes number of next frame expected

Sliding Window

Example Sliding Window

Sliding Window Enhancements

- Receiver can acknowledge frames without permitting further transmission (receive not ready)
- Must send a normal acknowledge to resume
- If duplex, use piggybacking
 - If no data to send, use acknowledgement frame
 - If data but no acknowledgement to send, send last acknowledgement number again, or have ACK valid flag (TCP)

Error Control

- Used to recover lost or damaged PDUs
- Involves error detection and PDU retransmission
- Implemented together with flow control in a single mechanism
- Performed at various protocol levels

Error Control

- Error recovery
 - Re-transmission
 - ARQ (automatic repeat request) primarily based on sliding window mechanism
 - Stop and wait
 - Go back N
 - Selective reject (selective retransmission)

Assume 2 end systems connected by direct Link

Automatic Repeat Request (ARQ)

- Automatic repeat request
 - Error detection
 - Positive acknowledgment
 - Retransmission after timeout
 - Negative acknowledgement and retransmission
- Stop and wait ARQ
- Sliding window ARQ

–Go back N

-Selective reject (selective retransmission)

Stop and Wait

- Source transmits single frame
- Wait for ACK
- If received frame damaged, discard it
 - Transmitter has timeout
 - If no ACK within timeout, retransmit
- If ACK damaged, transmitter will not recognize it
 - Transmitter will retransmit
 - Receive gets two copies of frame
 - Use ACK0 and ACK1

Stop and Wait ARQ Normal Operation

University of Education

Stop-and-Wait ARQ, lost frame

Stop-and-Wait ARQ, lost ACK frame

Piggybacking

Go-Back-NARQ

Sequence Number

Sender and Receiver Sliding Window

Control Variables and Timers

Acknowledgment

Resending Frames

- Based on sliding window
- If no error, ACK as usual with next frame expected
- Use window to control number of outstanding frames
- If error, reply with rejection
 - Discard that frame and all future frames until error frame received correctly
 - Transmitter must go back and retransmit that frame and all subsequent frames

• Damaged frame

- Receiver detects error in frame *i*
- Receiver sends rejection-*i*
- Transmitter gets rejection-*i*
- Transmitter retransmits frame *i* and all subsequent
- Lost frame
 - Frame i lost
 - Transmitter sends *i*+1
 - Receiver gets frame i+1 out of sequence
 - Receiver send reject *i*
 - Transmitter goes back to frame *i* and retransmits

Lost frame

- Frame i lost and no additional frame sent
 - Receiver gets nothing and returns neither acknowledgement nor rejection
 - Transmitter times out and sends acknowledgement frame with P bit set to 1
 - Receiver interprets this as command which it acknowledges with the number of the next frame it expects (frame *i*)
 - Transmitter then retransmits frame i

Damaged acknowledgement

- Receiver gets frame *i* and send acknowledgement
 (*i*+1) which is lost
- Acknowledgements are cumulative, so next acknowledgement (*i*+*n*) may arrive before transmitter times out on frame *i*
- If transmitter times out, it sends acknowledgement with P bit set as before
- This can be repeated a number of times before a reset procedure is initiated

Damaged rejection

As for lost frame

Go-Back-NARQ, normal operation

Go-Back-NARQ, lost frame

Go-Back-NARQ: sender window size

University of Education

In Go-Back-N ARQ, the size of the sender window must be less than 2m; the size of the receiver window is always 1.

Selective Reject

- Also called selective retransmission
- Only rejected frames are retransmitted
- Subsequent frames are accepted by the receiver and buffered
- Minimizes retransmission
- Receiver must maintain large enough buffer
- More complex logic in transmitter

Figure 11.7 Sliding-Window ARQ Protocols