IT-5301-3 Data Communications and Computer Networks

University of Education, Pakistan.

Lecture 08 - Guided Media

Lecture 08 - Roadmap

- Transmission Media
- Introduction
- Design Factors To Select a Media
- Types of Media
 - Guided Media
 - Unguided Media
- Guided Transmission Media
 - Twisted Pair
 - Coaxial Cable
 - Fiber Optics

Introduction

- The world of computer networks and data communications would not exist if there were no medium by which to transfer data.
- The two major categories of media include:
 - Guided Media
 - Unguided Media

Overview

- Characteristics and quality determined by medium and signal
- For guided, the medium is more important
- For unguided, the bandwidth produced by the antenna is more important
- Key concerns are data rate and distance

Design Factors

- Bandwidth
 - Higher bandwidth gives higher data rate
- Transmission impairments
 - Attenuation
- Interference
- Number of receivers
 - In guided media

Guided Transmission Media

- Guided media, which are those that provide a conduit from one device to another, included
- Twisted Pair
- Coaxial cable
- Optical fiber

Twisted Pair

A twisted pair consists of two conductors (normally Copper), each with its own plastic insulation, twisted together. One wire is used to carry signal while other one is used as a reference.

Unshielded and Shielded TP

• Unshielded Twisted Pair (UTP)

- Ordinary telephone wire
- Cheapest
- Easiest to install
- Suffers from external Electro-magnetic interference
- Shielded Twisted Pair (STP)
 - Metal braid or sheathing that reduces interference
 - More expensive

Harder to handle (thick, heavy)

Categories of unshielded twisted-pair cables

Category	Bandwidth	Data Rate	Digital/Analog	Use
1	very low	< 100 kbps	Analog	Telephone
2	< 2 MHz	2 Mbps	Analog/digital	T-1 lines
3	16 MHz	10 Mbps	Digital	LANs
4	20 MHz	20 Mbps	Digital	LANs
5	100 MHz	100 Mbps	Digital	LANs
5e	100 MHz	100/1000 Mbps	Digital	LANs
6	250 MHz	1000 Mbps	Digital	LANs
ба	500 MHz	10 Gbps	Digital	LANs

Cat3 vs Cat5

- Key difference is number of twists
- Cat5 is much more tightly twisted
- Twist length of 0.6 to 0.85 cm, compared to 7.5 to 10 cm of Cat3
- Tighter twisting of Cat5 is more expensive but provides much better performance then Cat3

Note:

Two conductors are twisted together for the purposes of canceling out electromagnetic interference (EMI) from external sources

Unshielded Twisted Pair (UTP)

T568A and T568B Wiring

Pin	T568A Pair	T568B Pair	Wire	T568A Color	T568B Color	Pins on plug face (socket is reversed)
1	3	2	tip	white/green stripe	white/orange stripe	
2	3	2	ring	green solid	orange solid	Pin Position
3	2	3	tip	M white/orange stripe	white/green stripe	
4	1	1	ring	0 blue solid	0 blue solid	
5	1	1	tip	white/blue stripe	white/blue stripe	
6	2	3	ring	orange solid	green solid	
7	4	4	tip	white/brown stripe	white/brown stripe	
8	4	4	ring	one of the solid brown solid	one of the solid brown solid	

Twisted Pair - Applications

- Most common medium
- Telephone network
 - Between house and local exchange (subscriber loop)
- Within buildings
- For local area networks (LAN)
 10Mbps or 100Mbps

Twisted Pair - Conclusions

- Cheap
- Easy to work with
- Low data rate
- Short range
- Speed and throughput 10-100 Mbps
- Maximum Cable length 100m

UTP pros and Cons

- <u>Advantages</u>
- a high installed base
- cheap to install
- easy to terminate

- **Disadvantages:**
- very noisy
- limited in distance
- suffers from interference

Categories of coaxial cables

е	Use	Impedance	Category
e TV	Cable TV	75 Ω	RG-59
hernet	Thin Etherr	50 Ω	RG-58
hernet	Thick Ether	50 Ω	RG-11
	Thick Et	50 Ω	RG-11

Coaxial Cable

BNC connector

Speed and throughput: Average \$ per node: Media and connector size: Maximum cable length: 10 - 100Mbps Inexpensive Medium 500 m (medium)

BNC Connectors

Coaxial Cable Applications

- Most versatile medium
- Television distribution
 Cable TV
- Long distance telephone transmission
 - Can carry 10,000 voice calls simultaneously
 - Being replaced by fiber optic
- Short distance computer systems links
- Local area networks
- Maximum cable length 500m in case of Thick Ethernet and 185 m in Thin Ethernet.
- Speed 10-100 Mbps

Coaxial Cable

- A single wire wrapped in a foam insulation surrounded by a braided metal shield, then covered in a plastic jacket. Cable can be thick or thin.
- Base band coaxial technology uses digital signaling in which the cable carries only one channel of digital data.
- Broadband coaxial technology transmits analog signals and is capable of supporting multiple channels of data.

Coaxial Cable

- <u>Advantages</u>
- cheap to install
- conforms to standards
- widely used

- Disadvantages
- limited in distance
- limited in number of connections
- terminations and connectors must be done properly

Fiber Optic

There are three main components of Fiber optic cable

Core – thin glass center of the fiber where light travels.

Cladding – outer optical m surrounding the core

Jacket – plastic coating

that protects the fiber.

Fiber Optic

- Optical fiber is thin (2 to 125 um)
- Capable of guiding an optical ray
- Used to carry signals in the form of light over distances up to 50 km.
- Glasses and plastics can be used to make optical fibers
- Plastic fiber is less costly and can be used for short links.

Fiber Optic Cable

Bending of Light Ray

University of Education

Optical Fiber Transmission Modes

Single Mode Vs Multimode (1)

- An optical fiber that supports only one propagation mode. (I.e. the light travels in only one ray)
- Single-mode fibers have small cores (9 microns in diameter)
- Laser is used as light source to transmit infrared laser light.

- An optical fiber that supports more than one modes (I.e. the light travels in the core in many rays called modes)
- Multi-mode fibers have larger cores (62.5 microns in diameter)
- Light emitting diodes (LEDs) are used as light source.

Single Mode Vs Multimode (2)

- Single-mode fiber gives you a higher transmission rate and up to 50 times more distance than multimode
- Used by telephone and cable TV companies for long distance applications
- More expensive than multimode

- Multimode fiber gives you high bandwidth at high speeds over medium distances but less than single mode.
- Used for slower local area networks (LANs)
- Less Expensive than single mode

Multimode figure

"Multimode fiber" multiple paths through the fiber

Single mode and Multimode ...

- Micron: A micron is one one-millionth of a meter and 125 microns is 0.005 inches- a bit larger than the typical human hair.
- In Single mode optical fiber due to the small core and single light-wave any distortion is virtually eliminated that could result from overlapping light pulses, providing the least signal attenuation and the highest transmission speeds of any fiber cable type.
- Plastic Optical Fiber (POF) is large core (about 1mm) fiber that can only be used for short, low speed networks.

Fiber-optic connectors

Optical Fiber - Benefits

- Greater capacity
 - Data rates of hundreds of Gbps
- Smaller size & weight
- Lower attenuation
 - Today's optical fiber attenuation ranges from 0.5dB/km to 1000dB/km depending on the optical fiber used
- Electromagnetic isolation
- Greater repeater spacing
 - 10s of km at least
- Maximum cable length: up to 50 km or more
- Each fiber is a one way (simplex) channel for the light pulses
 - i.e. two fibers needed for a two-way (duplex) connection

Fiber Optics

- <u>Advantages</u>
- high capacity
- Do not suffer from electric interference
- can go long distances
- Higher bandwidth and data rates

- Disadvantages
- costly
- difficult to join
- Supports simplex connection only
- Must be handled with care
- Bending is not easy

Optical Fiber - Applications

• Long-haul trunks

- Average 1500 KM in length
- 20,000 to 60,000 voice channels
- Metropolitan trunks
 - Average length of 12 KM
- Rural exchange trunks
 Ranging from 40 to 160 KM.
- Subscriber loops
- LANs

Туре	Core	Cladding	Mode
50/125	50	125	Multimode, graded- index
62.5/125	62.5	125	Multimode, graded- index
100/125	100	125	Multimode, graded- index
7/125	7	125	Single-mode